Y
5 DALLAS /M1 AXI VI Application Note 706

Writing a Device Driver for TINIOS

INTRODUCTION

The TINI® platformt VM is powerful enough for very highlevel tasks such as serving web pages or
remote data logging. However, the Java language only provides limited low-level access necessary for
hardware communication. For speed and determinism sake, tasks of this nature are better implemented at
an operating system level.

The TINI 1/0O Subsystem enables communication with devices that require faster communication than the
JVM adlows. It provides a mechanism for assembly language drivers to act as an intermediary between
hardware and the JVM in a standard way. Additional drivers can be installed for communication with
new devices. This article examines the TINIOS 1/O subsystem, explains how to write a driver as a native
library, and provides a smple example in the form of a pipe driver.

GETTING STARTED
Before we begin, you need the TINI SDK version 1.02e or higher. Versions prior to 1.02e did not
publicly expose the com dal semi . conm Nat i veConm class that is necessary for driver communication.

This document assumes some familiarity with the TINI Native Interface (TNI) as well as familiarity with
8051 assembly, the a390 assembler, and the macr o preprocessor?.

DRIVER BASICS

A driver in TINIOS is made up of two parts: a set of standard functions to link with TINIOS (the driver
interface) and an interrupt or polled routine (the driver) to communicate with the device. Once the
interface is registered with TINIOS, it can be accessed using the com dal seni . conm Nat i veConmclass.

Accessing a Driver in Java
A device driver is loaded in as a native library. Once loaded, the following
com dal sermi . conm Nat i veCorm methods can be used.

. public static int open(int port, int stream;
Opens a connection to the driver. port represents the driver’ s port number, which is chosen by the
driver when it registers itsdf. stream can be set to NativeConm STREAM STDIN oOf
Nat i veConm STREAM STDOUT (they cannot be logically OR-ed together), depending on if the
handle represents an input or output stream. An integer handle is returned, which represents the
stream in al other cals. The handle is actually a one-byte unique-identifier value from the 1/0
subsystem, but promoted to an integer for Java.

. public static int close(int handle);
Closes the stream associated with handl e. Returns a 1 for success, or a0 for falure.

! Information available at http://www.ibutton.c om/TINI.
2 The TINI SDK, including all tools, are available at ftp:/ftp.dalsemi.com/publ/tini.

lof 33 080202

http://www.ibutton.com/TINI
ftp://ftp.dalsemi.com/pub/tini

AN706

. public static int read(int handle, byte [] arr, int timeout, bool ean suspend);

. public static int read(int handle, byte [] arr, int length, int offset, int
ti meout, bool ean suspend);

Reads from the opened stream. handl e must represent a stream opened for reading. ar r isthe
byte array buffer for the input. | engt h is the size of the input buffer. of f set represents the
first element of ar r to be used for theread. t i meout isthe timein millisecords allowed for the
read to complete before it returns. suspend should be set to true to ignore the timeout and

suspend until the read completes, or false to use the timeout. Function returns the number of bytes
read.

. public static void wite(int handle, byte [] arr);
o public static void wite(int handle, byte [] arr, int offset, int length);
Writes to an opened output stream. handl e must represent a stream opened for writing. ar r is

the output array. of f set is the first element of arr to be written. | engt h is the number of
bytes to write.

. public static int ioctl(int handle, byte [] arr, int offset, int length, int
ti meout);

Sends an ioctl call to the driver. handl e is any vaid stream handle. arr is an array of
parameters. | engt h isthe number of parameters. All other arguments should be ignored.

. public static int available(int handle);
Returns the number of bytes available without blocking. handl e represents an input stream.

DRIVER PHILOSOPHY
Figure 1 showsthe design of a TINIOS device driver.

Figure 1. /0O DRIVER PHILOSOPHY

Write

Interrupt
oI
Poll
Foutine

The driver can store incoming data in some sort of buffer in the event a read cannot be handled
immediately. A write is directly fed from the driver interface to the driver.

The driver interface consists of implementations of open, close, read, write, available, and ioctl functions.
These can be grouped together by what portion of the 1/0 subsystem invokes them, as shown by Figure 2.

20f 33

AN706

Figure 2. TINIOS I/O DESIGN

Java Virtual Machine

com.dalsemi.comm.MativeComm 5
\/ TINIOS

I/0 Subsystem Scheduler

Driver Called every
Managemant 4 ms

| o

|

Hat iveComm IO Queue IO _POLL

Calls driver
read and System
Foll functions

Calls driver

available,
apen, and
close

NativeComm

Thecom dal sem . conm Nat i veConmmclass binds the Java Virtual Machine and the I/O subsystem.
It contains static Java methods for calling the driver interface functions. While the read and wri t e
driver cals are queued by the I/O subsystem, the open, cl ose, avai | abl e,and i oct | are invoked

directly from the NativeComm methods. Program execution continues uninterrupted after these functions
complete.

open: Caled when the user tries to open a device for input or output. Driver and device
initialization should be performed in this function. Returns a success/error value.

cl ose: Caled when the user closes a device. Driver and device shutdown procedures should be
performed in this function. Returns a success/error value.

avai | abl e: Cdled to check the amount of available data that can be read from the driver.
Returns an integer count.

i octl: Cdled for functionality not directly supported by the driver interface. Returns a
success/error value.

3of 33

AN706

I/O Queue
The 1/0 subsystem handles writes differently than the above methods.

1) Thel/O subsystem receivesthewr i t e call, checks if the handle is open for writing, and queues it
if the deviceis busy.

2) Thedriver wri t e function is passed a buffer and a byte count to write. The driver wite isa
catalyst—it does not perform the write operation, but instead prepares the driver for writing and
returns,

3) Thel/O subsystem puts the executing Java thread to sleep.

4) The driver performs the hardware write. When it is finished, it calls the | O Wit eFree
function to inform the 1/O Subsystem it has completed.

5) The Javathread is awoken, and execution resumes.

It is important to note that the driver wr i t e does not write to the hardware, but only prepares the write
for asynchronous execution by the driver. The safest approach is to have a poll routine check for the
completion of the write, caling 1 O Wi t eFr ee when it detects completion. If 1O Wit eFreeis
called from the wri t e function, it attempts to wake the Java Thread before it is put to deep, and the
thread suspends indefinitely. Also, TINI does not have any way of protecting operating system state
from being modified inside of an interrupt service routine. Therefore, 1| O Wi t eFr ee should not be
caled from an ISR.

IO_POLL

The /0O subsystem must check on registered drivers continuously. To perform these checks, the
10_POLL function is caled by the scheduler every 4ms®. 10_POLL manages the status of pending reads
and writes. It is possible to register your own callback functions to be called on every IO _POLL. These
do not necessarily need to be I/0O related and can therefore serve any purpose.

The r ead driver interface function is called by 10 POLL as well. A driver r ead behaves very
differently than adriverwri t e.

1) Theread is queued by the I/O subsystem.

2) The Javathread is put to Seep.

3) |0 _POLL callsthedriver r ead function. The driver read uses an intermediate buffer of its own
to return up to 250 bytes back to the 1/0O subsystem. The driver r ead copies the amount it has
available into the buffer and exits.

4) Step 3 repeats until the amount requested is read in, or atimeout occursin 10_POLL (if atimeout
is enabled).

5) The Javathread is awoken by the I/O subsystem upon completion of the read or a timeout.

Note the differences between write and read. While adriver wr i t e is called once to initiate a write to a
device, adriver r ead is called repeatedly by the 1/0 subsystem to poll the data. Also, while a write
operation requiresan | O Wi t eFr ee for termination, a read operation is terminated automatically by
the 1/0O subsystem on completion.

3 More or less 4ms. TINIOS is not real-time.
40f 33

AN706

IMPLEMENTATION DETAILS

Driver Portion

If the device uses an interrupt, use System I nstal | _I nterrupt toinstall your interrupt service routine,
or Syst em Regi st er _External _I nterrupt to chain to the external interrupt line. If the device requires
apoll-based routine, use Syst em Regi st er Pol | to have your routine called every 4ms by IO _POLL.

Device writes should be handled within the driver, calling 1 O Wit eFree on completion. It is important
to note that 10 Wi teFree cannot be called by the driver write interface function or by any interrupt
service routine.

Driver Interface Registration

To add a driver to the TINIOS, you need to register your driver with the I/O subsystem using the function
System Regi ster _Driver. A driver number between 10SYS USER DRIVER and
IOSYS MAX_DRIVER must be assigned to the driver®. This number is used when opening and closing
the port.

It is recommended that you perform this step in the initialization function of your native library. The
driver will not be available until this step is complete.

Open

The driver open function is called when a thread attempts to open a driver. One of the microcontroller
registers (R2_BO) is set to the handle assigned to the port. Any state and device initialization should be
performed here.

Clear the accumulator to denote success, or an exception number (defined in api equ. i nc) to throw an
exception. All other registers must be restored to their prior state before returning.

Close
The driver close function is called when a thread closes the driver. Resident state cleanup and device

shutdown should be handled here.

Clear the accumulator to denote success, or an exception number (defined in api equ. i nc) to throw an
exception. All other registers are restored to their prior state before returning.

Read

Once a device read is initiated, the driver read function is called repeatedly. It is not passed any
arguments, and it returns a pointer to a structure, described by Figure 3.

Figure 3. READ FUNCTION RETURN VALUE

Size | Resv | Resv Eezv | Data
LSE

* TINIOS supports 16 I/O drivers. Drivers 0 to 7 are allocated to the system, and 8 to 15 are allocated to the user.

50f 33

AN706

The first byte is the size of the buffer being returned, with a maximum or 250 bytes. The next three bytes
are reserved, and should be set to 0. The remaining bytes are the data from the resident portion’s read
buffer. Do not create a new buffer on every read call! Instead, create a buffer in the open function and
free it in close. If speed is not an issue, you can use ephemeral state blocks (with
Nat Li b_Get Ephemer al St at eBl ock and Nat Li b_RermoveEphener al St at eBl ock) to hold your state
information. Otherwise, use indirects (acquired from Syst em Acqui r el ndi r ect Semaphor e) to store the
pointer to your state.

Clear the accumulator to denote success, or an exception number (defined in api equ. i nc) to throw an
exception. All registers except the first data pointer must be restored before returning.

Write
The driver write is passed the application id, the thread id, the data length, and a pointer to the data to be
written. All of this information must be passed to the resident portion and thewr i t e must be initiated.

Clear the accumulator to denote success, or an exception number (defined inapi equ. i nc) to throw an
exception. All other registers must be restored on completion.

Available

Avallable is caled to query the amount of data that can be read from the driver without blocking. The
value can be returned in R3:R2:R1:R0 of register bank 1. Clear the accumulator to denote success, or an
exception number (defined in api equ. i nc) to throw an exception. All other registers are restored to
their prior state before returning.

ioctl
The ioctl (input output control) function is used to make device specific calls. The first data pointer point
to an argument array, whose length is stored in R5:R4.

Clear the accumulator to denote success, or an exception number (defined in api equ. i nc) to throw an
exception. A return value can be put in R3:R2:R1:RO of register bank 1. All other registers must be
restored on completion.

Process Destruction

A driver can register a process destroy callback, using Syst em Regi st er ProcessDest r oyFunct i on, t0
perform any closing and shutdown operation when a process exits. The process destroy callback is passed
the identifier of the dying process in RO. Clear the accumulator to denote success, or an exception number
to throw an exception. All other registers must be restored on completion.

Example: System Pipe

Provided in the appendices is a sample driver that implements a very simple pipe driver. The pipe driver
allows for output from one process or thread to be read from another process or thread. It uses an
Ephemeral State Block (ESB) to hold the circular buffer and the read function return buffer. One byte is
used for the size count, and another is used for the offset of the first byte into the queue. Using a 256-byte
buffer makes handling the rollover ssmple, as it occurs automatically when the appropriate registers
overflow.

On startup, the native library initialization routine uses the process id from System_GetCurrentProcessid
(which is assigned a value of 0 to 7) to set abit in the reference counter value of the ESB. It then registers

60f 33

AN706

a process destroy callback, which clears the bits of the reference counter. When the counter is O, the
driver performs cleanup operations and unregisters itself. This allows communication across process
boundaries.

Memory past the circular buffer is used for the read return value. There is no need to worry about
serializability of the return buffer, because only one driver r ead can be caled at a time. The read
function insures it copies less than 250 bytes before performing the copy.

The write function installs a poll routine in IO_POLL to write the data into the buffer as space becomes
available. The poll routine performs the copy, storing intermediate state near the end of the ESB. The poll
routine removes itself when the write completes.

Classes in the comdalseni.pipeio package implement a java.io.InputStream and
j ava.io. Quput St reamon top of the driver. This alows for java programs to access the driver asif it was
another standard Java input or output stream.

CONCLUSION

While most embedded tasks can be handled by the TINI JVM, there are instances that require more
greater and tighter constraints. These can be handled by adding native driversto TINIOS. A native driver
consists of a polled or interrupt handler, and a set of interface functions. They can be loaded inside of a
native library, and TINI provides a standard interface to communicate with them. The main advantage of
using a native driver is that most of the operating system tasks, like queuing multiple writes or blocking a
process on aread, are offloaded onto TINIOS. This frees the devel oper to focus on device communication
and not operating system semantics.

TINI is a registered trademark of Dallas Semiconductor.

7 of 33

AN706

Appendix A: driver.a51

$i ncl ude(ds80c¢390. i nc)
$i ncl ude(api equ. i nc)

$i ncl ude(tini.inc)

$i ncl ude(ti ni macro. i nc)
$i ncl ude(driver.inc)

; This driver inplenments a 255 byte circular buffer for
; conmuni cati on across threads or processes. |t user

; an epheneral state block to hold the circular buffer
; and the return value for the read. (The structure

; is described in driver.inc).

IR R R SRS R RS R R RS E R E R E R R R R RS EREEEREREEEREEEREEEREEEREEERERE SRR SRR

- %

;* Function Nanme: Init_Pipe

-k

;* Description: Native Library initialization routie.

-k

;* I nput (s): None.

-k

;* Qutputs(s): a - 0 on success, non-zero for init exception
- %

;* Notes: | amcreating nmy state info in this function

- %
- %

R R R R R R R R R R R R R I R R R R I I I R R R I R
)

I nit_Pipe:
; This function performs two operations. The first is
; to register the driver with the I/O subsystem The second
; is to create state info for the pipe (the circular buffer
; the read return value buffer, and the wite state
; buffer).

I nit_Get Ephener al St at eBl ock:
; Now create the state info. First, check if the
; Epheneral State Block (ESB) exists.
nmov dptr, #Queuel D ; see if we have an ESB installed
I call NatLib_Get Epheneral St at eBl ock

; Cache pointer away if it gets destroyed

nmov R5, dp
nmov R6, dph
nmov R7, dpx
jnz I nit_Mall ocEphener al ;

8of 33

AN706

; an ESB exists - some process
; has already called | oad since
; boot tinme

Init_StoreRetrieveEpheneral :

Init_M

ljmp Init_Increnent Ref erenceCount

: No ESB exists! Dios Mo! Tine to
; init all the data!

| ocEpheneral :

; Install the process destroy function

nov dptr, #Pipe_ProcessExit
I cal l Syst em Regi st er ProcessDest royFuncti on

nov R2, #LOW Pl PE_END) ; Al'l ocate 1024 bytes
nov R3, #H GH(Pl PE_END) ;

lcall mm Mall oc ;

j nz I nit_Done ;

; The nmenory is cleared by nmmalloc, so there isn't
; any nore initialization to do

nov dpl 1, dpl ; copy address to
nov dphl, dph ; second dptr
nmov dpx1, dpx ; handle is already in R3:R2

; Cache pointer away if it gets destroyed

nov R5, dp
nmov R6, dph
nmov R7, dpx
nmov dptr, #Queuel D ; first dptr is our identifier

I call NatLib_Install Epheneral St at eBl ock

nov dpl , R5
nov dph, R6
nov dpx, R7

; W& need to now assign our driver a
; driver number and store it away

nov a, #LOW PI PE_DRVNUM

nov b, #Hl GH(PI PE_DRVNUM

I call add_dptri1_16

I cal l System | O_Next Avai | abl eDri ver Num
PUTX

nmov dpl , R5

nmov dph, R6

nmov dpx, R7

9of 33

AN706

; Register the driver with the 1/0O subsystem
; acc holds the driver num

I call Pi pe_Init
push acc
| call System Regi ster_Driver

; Disable non blocking wite 1/0

pop acc

nmov b, #01

I cal | Syst em_ | O_Enabl eNonBl ocki ngWites
nmov dpl , R5

nmov dph, R6

nov dpx, R7

I nit_I ncrenment Ref erenceCount:

; mm_mal l oc should initialize the nmenory to zero.
; but we need to increnent the reference count

nmov a, #LOW Pl PE_REFCOUNT)
nmov b, #HI GH(PI PE_REFCOUNT)
I cal l add_dptri1_16

; Set the bit denoting the process id

I call System Get Current Processld
I call Pi pe_Power
nov b, a
GETX
or | a, b
PUTX
I nit_Done:
clr a
ret

LR R R R R I R I R R R I R I R R R R R R

-k

;* Function Nane: Pipe_Read

-k

;* Description: Function to copy data fromthe circular buffer
;* back to the |1/0O subsystem

-k

;* I nput (s): None

;¥ Qut puts(s): dptr - pointer to input buffer

-k

;* Notes: First 4 bytes of read buffer are:

;* length, 0, 0, O

-k
’**

; The function copies data out of the circular buffer

; and into the read return buffer. /0 allows a maxi mum

; return value of 250 bytes per read, so that is our
10 of 33

upper

AN706

; bound

Pi pe_Read:

; First, save *everything* away.

PUSH_DPTR2
PUSH_BANK_0
PUSH_BANK 1
PUSH b

PUSH acc
PUSH DPS

;. Get the state bl ock

Pl PE_GET BUFFER

; Save the pointer away

nmov RO_B1, dp
nmov R1_B1, dph
nov R2_B1, dpx
PUSH_DPTR1

: Move to the read buffer
nov a, #LON Pl PE_R LEN)
nov b, #Hl GH(PI PE_R _LEN)
lcall add_dptrl_16

; Store the read buffer away in DPL1: DPH1: DPX1

nov R3_B1, dp
nmov R4_B1, dph
nmov R5_B1, dpx
nmov dpl 1, dp

nmov dph1l, dph
nov dpx1, dpx

POP_DPTRL

; Now DPL: DPH: DPX is pointing to the pipe buffer
; and DPL1: DPH1: DPX1 is pointing to the read buffer
; Get the state vars fromthe pipe

nmov dps, #0 ; Use DPL: DPH: DPX

i nc dptr ; Move to the size byte
GETX

nov RO, a ; CGet the start offset
inc dptr

GETX

nmov R1, a

i nc dptr

; RT is RO with the high bit cleared. It wll
11 of 33

AN706

; serve as our |oop counter and as our nunber
; of bytes to read

nov R7, RO_BO

clr c

nmov a, RO

cj ne a, #250, $+3

jc pi pe_read_init_ret_ buf
nov R7, #250

pipe_read_init_ret_buf:

; We're going to need this buffer later
PUSH_DPTR1

; Ok, now the size and offset are in RO: Rl

; and DPL: DPH: DPX are pointing to the first byte
; of the pipe. Lets initialize the return buffer
; shall we?

; Start by switching to DPL1: DPH1: DPX1

i nc dps

; Wite the length of the return size

nmov a, R7
PUTX

i nc dptr
: Fill in the rest of the header
clr a
PUTX

inc dptr
PUTX

inc dptr
PUTX

i nc dptr

; We're going to copy what we can fromthe pipe
; into the read buffer.

POP_DPTR1

; Looks like we're committed. Lets start reading

nov dps, #1

pi pe_read_test_zero:

; Test if we are sending zero bytes

nmov a, R7
jnz pi pe_read_l oop

12 of 33

AN706

[jmp pi pe_read_exit

pi pe_read_| oop:

; Use DPL: DPH: DPX
i nc dps
; Use novc for the copy

; Yes, | *know* how very illegal this should be

; as it is only possible when code space = data space,

; but | saw Don "The Godfather” Loomis ("Let me wite you
; afirmvare you can't refuse") do it in his code, so

; I claiml can to.

nmov a, Rl

novc a, @+dptr

: Wite acc into the read buffer

i nc dps
PUTX
i nc dptr

; increment the buffer offset, decrenent
; the size count, and | oop

i nc R1

dec RO

dj nz R7, pi pe_read_| oop

pi pe_read_exit:

; Get the read buffer

nmov dpl, RO_B1
nmov dph, R1_B1
nov dpx, R2_Bl

; Update 'start' and 'offset

nov dps, #0

inc dptr

nmov a, RO

PUTX

i nc dptr

nmov a, Rl

PUTX

nmov dpl, R3_B1
nmov dph, R4_B1
nmov dpx, R5_B1

13 of 33

AN706

; Exit without incident

POP DPS
POP acc
POP b
POP_BANK 1
POP_BANK_0
POP_DPTR2

clr a
ret

LR R R R R R I I R R R R I R I R R O R R

-k

;* Function Name: Pipe Wite

-k

;* Description:

- %

;* Input(s): dptr -> pointer to data to send

;* R2 -> App Id

;* R7 -> Thread Id

;¥ R5:R4 -> length of data to send.

-k

;* Qutputs(s): a - 0 on success, exception nunber on failure
-k

-

EIE R IR I I I S I I I A I A I I I R I R I A I I I I R I I A I I A R I R A I I I A S A O I I A A

; This function "initiates" the wite operation

; It moves the state it has been passed into the ESB
; and then installs a poll routine to perfomthe copy
; operation. The function then exits.

Pi pe_Wite:
; Get the state block, but make sure not
; to disrupt any of the registers we've
; been passed!

PUSH acc
PUSH b

PUSH dps
PUSH BANK 0
PUSH_DPTR1

push r4_bo
push r5 _bo
push r2_bo
push r7_bo
Pl PE_GET_BUFFER

pop R7_bO0
pop R2_BO
pop R5_BO
pop R4_BO

14 of 33

AN706

nov dps, #0

; Wite all of our state while making sure
; the schedul er doesn't run (preventing

; our poll fromwiting in the mddle of

;o oour write).

TI NI OS_ENTER_CRI Tl CAL_SECTI ON

; Informour poll routine that a wite is occurring

GETX

sethb PI PEVWRI TE_BI T
PUTX

; Fill in the state vars
nov a, #LOW PI PE_W STATE)
nov b, #H GH(PI PE_W STATE)
I cal l add_dptri1_16

nmov a, R4

PUTX

i nc dptr

nmov a, R5

PUTX

i nc dptr

nmov a, R7

PUTX

i nc dptr

nmov a, R2

PUTX

POP_DPTR2

inc dptr

nov a,dpll

PUTX

i nc dptr

nov a, dphl

PUTX

i nc dptr

nmov a, dpx1

PUTX

clr a

nov dptr, #Pi pe_Pol

I call Syst em Regi st er Pol

TI NI OS_EXI T_CRI TI CAL_SECTI ON

POP_BANK_0
pop dps
15 of 33

AN706

po
po
re

*khkkkkkkk*k

Functio

Descr

b I R

* In
*

N Qutp
*
*
*

*kkkkhkkk*k

Pi pe_Pol |

p b
p acc
t

LR R R I R R I R I O R O I R I I I R S R R

n Name: Pi pe_Pol

iption: Poll routine installed to copy fromthe wite
buffer into the circular buffer

put (s): None

uts(s): a - 0 on success, exception nunmber on failure

EE R I I S R I S I S I I S R S S I R S I R S I

This function performs the wite operation. If there is not
enough space in the circular buffer for the data, it wll
copy data into the space available, and then return. This
will repeat until all the data has been witten, where

the poll routine calls O WiteFree and renmoves itself
from!l O POLL

PUSH_DPTR1

PUSH_DPTR2
PUSH _BANK 0
PUSH BANK 1
PUSH b

PUSH acc
PUSH DPS

no

P

Regi ster Usage

RO_BO - Buffer size

R1L BO - Ofset into Queue

R2 BO - Handle for the io subsystem

R3_BO - Count register for |oop

R4:R5 - Size for wite (Bank 0)

R7_BO - Thread ID of write

RO: R1l: R2 (Bank 1) - Pointer to circular buffer offset
R3: R4: R5 (Bank 1) - Pipe Data Structure

If the wite bit is not set, then
exit out
Y dps, #0

PE_GET_BUFFER

GETX

ib
c
l'j

pi pe_pol | _

Pl PE_WRI TE_BI T, pipe_poll_init
r a
np pi pe_pol | _exit
init:
16 of 33

AN706

; Cache the pointer to the state bl ock

R3_B1, dp
R4_B1, dph
R5_B1, dpx

a, #LOW Pl PE_W STATE)
b, #H GH(PI PE_W STATE)
add_dptr1_16

R4, a
dptr

R5, a
dptr

R7, a
dptr

R2, a
dptr

acc
dptr

acc
dptr

dpx, a
dph
dpl

; Hold onto the wite buffer

dpl 1, dpl
dphl, dph
dpx1, dpx

; Cache the pointer to the state bl ock

dpl , R3_B1
dph, R4_B1
dpx, R5_B1

. Get the size and the offset

i nc
GETX
nov
i nc
GETX
nov
i nc

dptr

RO, a
dptr

R1, a
dptr

; Cache the pointer to the buffer

17 of 33

AN706

pi pe_po

pi pe_po

pi pe_po

;. Cal cul
;. buffer
;o in R3
nov
cpl
nov

RO_B1, dpl
RL_B1, dph
R2_B1, dpx

ate the available size for the circul ar
(255-size = conplinment of RO) and stash

a, RO
a
R3, a

; Figure out how many bytes will
; be copied in. My logic is:

L If

R5 is set, then size > 255. Copy in

; what size is avail able

;0 2) If

R5 is zero and R4 > avail abl e si ze,

; then copy in avail able size bytes
; 3) Oherwise, copy in R4 nunber of bytes

| _cal c_avail abl e:

nmov a, R5

jnz pi pe_pol | _use_avail abl e

clr c

nmov a, R3

cj ne a, R4_BO, $+3

jc pi pe_pol | _use_avail abl e

nov R3, R4_B0O

| _use_avail abl e:

; Check if R3 is zero, and abort if it is

nmov a, R3

jnz pi pe_pol | _not _zero

sj np pi pe_pol | _not done

| _not_zero:

; Since we aren't going to overwite the start
; variable, lets use it as our offset var into
; the circular buffer. Add the size to the offset
; to calculate start position

nmov a, RO

add a, RL

nmov R1, a

; Subtract the size off R4:R5

clr c

nmov a, R4

18 of 33

AN706

subb a, R3

nmov R4, a
nmov a, R5
subb a, #0
nmov R5, a

pi pe_pol | _| oop:
; Yes, | *know* this is a slow approach, but
; it means | don't need to do any nodul o work
; Get a byte fromthe wite buffer

inc dps
GETX

nov b, a
i nc dptr

: Return to the circular buffer

inc dps

; Reset it, and go in offset ammount, and wite

; the byte

nov dpl , RO_B1
nmov dph, R1_B1
nov dpx, R2_B1
nov a, Rl

I call add_dptr1
nov a, b

PUTX

; Increment counters and | oop

inc R1
inc RO
dj nz R3, pi pe_pol | _| oop

; If there are not any other
; bytes to wite then clear the wite

nov a, R4

orl a, R5

j nz pi pe_pol | _not done
nov dpl , R3_B1

nov dph, R4_B1

nmov dpx, R5_B1

CGETX

clr PIPE_ WRI TE_BI T
PUTX

I cal | System 1 O WiteFree

19 of 33

AN706

nov dptr, #Pi pe_Pol
I call Syst em RenpvePol

pi pe_pol | _not done:
; Wite the current state of the queue
; back into the state bl ock

nmov dpl , R3_B1
nmov dph, R4_B1
nmov dpx, R5_B1

i nc dptr

nmov a, RO

PUTX

nov a, #LOW Pl PE_W STATE- PI PE_SI ZE)
nov b, #Hl GH(PI PE_W STATE- PI PE_SI ZE)
| cal l add_dptr1_16
nov a, R4

PUTX

i nc dptr

nmov a, R5

PUTX

inc dptr

nmov a, R7

PUTX

i nc dptr

nov a, R2

PUTX

i nc dptr

nov a,dpll

PUTX

inc dptr

nmov a, dphl

PUTX

i nc dptr

nmov a, dpx1

PUTX

clr a

pi pe_pol | _exit:

POP DPS
POP acc
POP b
POP_BANK 1
POP_BANK_0
POP_DPTR2
POP_DPTR1

clr a
ret

R R R I R R I I I I I R R S R S R R I R S R R R R
)

-k
)

20 of 33

AN706

;* Function Name:
*
Descri pti on:

I nput (s):

*
*
*
*
*
;* Qut put s(s):
*
* Not es:
*
*

- %

Pi pe_Open
Function to initialize the driver

a -> Port Number
R2 -> Driver Handl e

a - 0 if success, exception nunber otherw se
| amusing the Native Library init routine to

create the state block, so we will just initialize
it in this function.

IR EEEEEREEEEREREEEREEEREEREEEEREREEREREEEEEEREEERESEREEREREEREEEEEE SRR SRR SRR SRR EREEEEREE]

Pi pe_Open:

; Initialize the pipe data structure

Pl PE_GET_BUFFER

clr a
PUTX

i nc dptr
PUTX

i nc dptr
PUTX

; Clear out anything that remains in the pipe read buffer

nov a, #LOW Pl PE_R _LEN- PI PE_START)
nov b, #HI GH(Pl PE_R _LEN- Pl PE_START)
| call add_dptrl_16

clr a

PUTX

inc dptr

PUTX

i nc dptr

PUTX

i nc dptr

PUTX

i nc dptr

; Increment the reference count

clr a
ret

Functi on Nane:
Description:
I nput (s):

CQut put s(s):

* % X X X X X X *

*

Not es:

LR R R R R I R I R R R I R I R R R R R R

Pi pe_Cl ose

Function to shutdown the driver

a -> Port Nunber

a - 0 if success, exception number otherw se

Si nply nmaking sure the Poll routine has been renoved
21 of 33

AN706

;* before exiting.

- %
- %

IR EEE R SRR E SRR SRR R R RS EE SRR EREEEEREEEREREEEREEEREREEEEE SRR EREEEEREEEERE SRR SRR

Pi pe_Cl ose:

; First, remove the poll routine if it is resident

nmov dpt r, #Pi pe_Pol |

I cal | Syst em RenovePol |
clr a

ret

EEE R I O I I S R I S S R S I S S R R R I S I I R S R S S I

;* Function Name: Pipe_loctl

-k

;* Description: Use to make driver-specific calls
-k

;¥ Input(s): dptr -> pointer to argunment array
;* R2 -> Driver Handl e

;* R5: R4 -> |l ength of data to send.
-k

;* Qutputs(s): a - 0 if success, exception nunber otherw se
- %

. Not es:

*

IR EEEE SRR EEEREEEREEREREEREEEEEREEREEEEEEEREEERESEREEREREEREREEEEE SRR SRR SRR SRR SRR EEREE]

Pi pe_I OCTL:
clr a
ret
R R S S I I R O S I O S R R O A R A R I S S
-k
;* Function Name: Pipe_Avail able
-k
;* Description: Use to make driver-specific calls
-k
;* Input(s): R2 -> Driver Handle
-k
;* Qutputs(s): a - 0 if success, exception number otherw se
;¥ RO: R1: R2: R2 - Size of avail abl e pipe data.
-k
;¥ Not es:
*

EE IR R I R I I I R I S R R R I R S I S I

: Pulls the size out of the ESB and returns it

Pi pe_Avai | abl e:
PUSH_DPTR1

22 of 33

AN706

EEE R R R S I R I I I R I R S R I R R R I R O I R I R I R
)

*
*
*
*
*
- %
*
*
*
*
*

PUSH_BANK_0

PUSH acc
PUSH b

Pl PE_GET_BUFFER

TI Nl OS_ENTER_CRI TI CAL_SECTI ON

inc dptr
GETX

TINI OS_EXI T_CRI TI CAL_SECTI ON
nmov RO B1, a
clr a

nov R1 _B1, a
nmov R2 B1, a
nmov R3_B1, a
POP b

POP acc
POP_BANK_0
POP_DPTR1

ret

Functi on Nane:

Descri pti on:

I nput (s):

Qut put s(s):

Pipe_Init:
mov dptr, #Pi pe_Read

nmov RO_BO,
mov R1_BO,
mov RO_B1,

Pi pe
Prep
None

Al l

dpl
dph
dpx

Init

ares the driver for registration

registration registers are set.

KR I R IR I S I R R R S T R R S R R O

nmov dptr, #Pi pe_Wite

mov R2_BO,
mov R3_BO,
nmov R2_BI,

dpl
dph
dpx

mov dptr, #Pi pe_Open

mov R4_BO,
mov R5_BO,
nmov R4_B1,

dpl
dph
dpx

nmov dptr, #Pi pe_Cl ose

mov R6_BO,
mov R7_BO,
nmov R6_B1,

dpl
dph
dpx

nov dptr, #Pi pe_I OCt |

23 of 33

AN706

nmov RO_B2, dp
nov R1_B2, dph
nmov RO_B3, dpx

nov dptr, #Pi pe_Avai |l abl e
mov R2_B2, dp

nov R3_B2, dph

nov R2_B3, dpx

ret

LR R R R R R RS R R R R RS R R R RS R R RS R R R SRR R R SRR EEREEEREEEEREREERREEEREREEEREEEREESEERESES

*

Function Name: Pipe_Power

Description: Hel per nmethod - performs a 2%a operation

*

*

*

*

0 I nput (s): acc - value

*

* Qutputs(s): acc - Two to the power of parameter (8 bits only)
*

*

IR EEE R SRS E RS E R R E R R RS EE SRR EREEEEREE SRR EEREEEREREEEREE SRR EREEEEREEEERE SRR EEEE]

Pi pe_Power :
push b
nov b, a
nov a, #1
jz pi pe_power _exit
pi pe_power _| oop:
ri a
dj nz b, pi pe_power _| oop

pi pe_power _exit:

pop b
ret

LR R R R R R RS R R R R RS R R RS R R R E RS R RS REEERERE SRR EEREEEREEEEREREERREEEEREEEREEEREESEERESES

*

;* Function Nanme: Pipe_ProcessExit

*

Description: Called on process destruction. C eans up
things | eft behind.

I nput (s): acc - Process ID
Qut put s(s): none

Note(s): PID is passed in RO

* ok F X X X X X X

R R R R R R R R R R R R R I R R R S O R I R R R I R
)

Pi pe_ProcessExi t:
PUSH_DPTR1
PUSH_BANK_0
push b
push RO_B1
push R1_B1
push R2_B1

Pl PE_GET_BUFFER
24 of 33

AN706

jz pi pe_processexit_start
[jmp pi pe_processexit_exit

pi pe_processexit_start:

; Hold onto the pointer

nov RO_B1, dp
nov R1_B1, dph
nov R2_B1, dpx

; Hold onto the handl e

nov R6, R2_B0

nmov R7, R3_B0

; Hold the PID

; W& need to clear the process bit

nov a, #LOW PI PE_REFCOUNT)
nov b, #H GH(PI PE_REFCOUNT)
| call add_dptrl_16

; Set the bit denoting the process id

nov a, RO

I call Pi pe_Power
cpl a

nov b, a

GETX

anl a, b

PUTX

; If no one else is holding onto this driver,
; then performthe proper cleanup

jz pi pe_processexit_cl eanup

sj mp pi pe_processexit_exit

pi pe_processexit_cl eanup

; Since we're still in the neighborhood,
; lets get the driver numand store it away

i nc dptr
GETX

: First, renpve the driver fromthe driver table

I cal l System Unregi ster_Driver

; Next, renove the poll routine if it is resident

nov dptr, #Pi pe_Pol
250f 33

AN706

I cal l Syst em RenovePol

; Renpve ourselves fromthe process destroy

; call back
nov dptr, #Pipe_ProcessExit
I cal l Syst em Unr egi st er ProcessDestroyFuncti on

; Finally, lets clear the ESB

nov dptr, #Queuel D
I cal | Nat Li b_RenoveEphener al St at eBl ock
nmov R2, R6_B0
nmov R3, R7_B0
I call MM _Fr ee
pi pe_processexit_exit:
pop R2_B1
pop R1_B1
pop RO_B1
pop b
POP_BANK_0
POP_DPTR1
clr a

ret
; TINI Convertor in version 1.02 requires a native nethod

Nati ve_Get Pi peDri ver:
Pl PE_GET_BUFFER

nmov a, #LOW Pl PE_DRVNUM
nmov b, #Hl GH(PI PE_DRVNUM
I cal l add_dptri1_16

GETX

nmov RO, a

clr a

nmov R1, a

nmov R2, a

nmov R3, a

ret
Queuel D
db " DSPI PEEX", O

Debug_Str:
db "Debug Point ",0

END

26 of 33

AN706

Appendix B: driver.inc

$i ncl ude(tinidriver.inc)

; Structure for

nmy buffer

; struct PipeQueue

; /'l Keep track of how many times we have been opened

buf fer

nunber we | oaded into

0

Pl PE_FLAGS+1
Pl PE_SI ZE+1
Pl PE_START+1

Pl PE_BUFFER+256

Pl PE_R_LEN+1
Pl PE_R_LEN+3

» o

; !/

; // Circular

; /1

; ul flags

; ul size

; ul start

; ul buffer[256]

; /1

; // Read return val ue
; !/

; ul r_len

; ul r_reserved[3]
; ul r_buffer[256]
; I

; // Wite State vari abl es
; /1

; ul w_state[8]

; !/

; /1

; ul reference_count
; /1

; /1 The driver

; /1

; ul driver_num
)

Pl PE_FLAGS equ

Pl PE_SI ZE equ

Pl PE_START equ

Pl PE_BUFFER equ

PI PE_R _LEN equ

Pl PE_R RESV equ

Pl PE_R BUFFER equ

Pl PE_W STATE equ

Pl PE_REFCOUNT
Pl PE_DRVNUM
Pl PE_END

equ
equ
equ

; Used for denoting
; in the flags byte

PIPE WRITE_BIT equ

Pl PE_R_BUFFER+256

Pl PE_W STATE+8

Pl PE_REFCOUNT+1

Pl PE_DRVNUMt+1

a wite in progress

acc. 7

; Get the pipe buffer fromTIN GS

state vars

AN706

Pl PE_GET_BUFFER MACRO
nov dptr, #QueuelD ; see if we have an ESB installed
I call NatLib_Get Epherneral St ateBl ock

ENDM

; Debug Macro

Pl PE_DEBUG MACRO PARAM val ue
PUSH _DPTR1
push acc
push dps
nmov dps, #0
nov dptr, #Debug_Str
I cal l i nfo_sendstring
nov a, #val ue
I cal l i nf o_sendt wohex
I call i nfo_sendcr | f
pop dps
pop acc
POP_DPTR1

ENDM

28 of 33

AN706

Appendix C: PipeDriver.java
package com dal seni . pi pei o;
i mport com dal sem .conm *;

public class PipeDriver

{
static int pipe_port;
/1
/1 This nmethod dynam cally | ooks up the
/1 next available driver fromthe system
/!l and allocates it, or uses the current
/1 driver nunber if the pipe is
/1 already | oaded.
/1
static native int getPipeDriver();
static
{
System | oadLi brary("driver.tlib");
pi pe_port = getPipeDriver();
}
}

29 of 33

AN706

Appendix D: PipelnputStream.java

package com dal seni . pi pei o;

i nport com dal sem . conm *;
i mport java.io.*;

public class Pipel nput Stream extends | nput Stream

{

/1

/1 Handle to the pipe input stream
/1

i nt pi pe_handl e;

/1

/1 Input buffer for single byte reads
/1

byte [] charArr;

public PipelnputStream() throws Exception

{
/1
/1 Denote the pipe as invalid
/1
pi pe_handl e = -1;
char Arr = new byte[1];
try
{
/1
/1 On any exception, nake the pipe invalid
/1
pi pe_handl e = Nati veComm open(Pi peDri ver. pi pe_port,
Nat i veComm STREAM STDI N) ;
}
catch (Exception E)
{
pi pe_handl e = -1;
t hr ow E;
}
}
public int read(byte arr[], int offset, int |ength) throws | OException
{
/1
/1 Performa validity check
/1
if (pipe_handle == -1)
t hrow new | OException("pipe is not valid");
/1
/1 Performa |ength/offset check. This is *not* done
/1 by 1/0 for you.
/1
if ((offset >= 0) && ((offset+length) <= arr.length))
{
return NativeConm read(
pi pe_handl e, arr, of fset, | engt h, O, fal se);
}
el se throw new Arrayl ndexQOut Of BoundsExcepti on(
"offset =" + offset + "length =" + |ength);
}

30 of 33

AN706

public int read() throws | OException

{
int |len;
/1
/'l Performa validity check
/1
if (pipe_handle == -1)
t hrow new | OException("pipe is not valid");
/1
/1 Read a single byte
/1
l en = NativeComm read(pi pe_handl e, charArr,0,1,0,fal se);
return ((len==1)?((int)charArr[0] &xFF):-1);
}
public void close() throws | OException
{
if (pipe_handle !'= -1)
Nat i veComm cl ose(pi pe_handl e);
}

31 of 33

AN706

Appendix E: PipeOutputStream.java

package com dal seni . pi pei o;

i nport com dal sem . conm *;
i mport java.io.*;

public class Pi peQutputStream extends Qut put Stream

{
/1

/1 Handle to the pipe input stream

/1

i nt pipe_handl e;

/1

/1 Array for passing single byte val ues
/1

byte [] charArr;

publ i c Pi peQutputStream) throws Exception

I en) throws | OException

len =" + |len);

{
/1
/'l Denote the pipe as invalid
/1
pi pe_handl e = -1;
charArr = new byte[1];
try
{
/1
/1 On any exception, make the pipe invalid
/1
pi pe_handl e = Nati veComm open(Pi peDri ver. pi pe_port,
Nat i veComm STREAM STDOUT) ;
catch (Exception E)
{
pi pe_handl e = -1;
t hrow E;
}
}
public void wite(byte [] arr, int offset, int
{
/1
/1 Performa validity check
/1
if (pipe_handle == -1)
t hrow new | OException("pipe is not valid");
/1
/'l Performa |length/offset check. This is *not* done
/1 by 1/0 for you.
/1
if ((offset >= 0) && ((offset+len) <= arr.length))
{
Nat i veComm wri t e(pi pe_handl e, arr, of fset, | en);
}
el se
t hrow new Arrayl ndexQut Of BoundsExcepti on(
"offset = " + offset "
}

public void wite(int x) throws | OException
32 of 33

AN706

{
/1
/1 Performa validity check
/1
if (pipe_handle == -1)
t hrow new | OException("pipe is not valid");
charArr[0] = (byte)(x & OxFF);
Nati veComm wri t e(pi pe_handl e, charArr, 0, 1);
}
public void close() throws | OException
{
if (pipe_handle = -1)
Nat i veComm cl ose(pi pe_handl e);
}

33 of 33

