
 1 of 33 080202

INTRODUCTION
The TINI® platform1 JVM is powerful enough for very high- level tasks such as serving web pages or
remote data logging. However, the Java language only provides limited low-level access necessary for
hardware communication. For speed and determinism sake, tasks of this nature are better implemented at
an operating system level.

The TINI I/O Subsystem enables communication with devices that require faster communication than the
JVM allows. It provides a mechanism for assembly language drivers to act as an intermediary between
hardware and the JVM in a standard way. Additional drivers can be installed for communication with
new devices. This article examines the TINIOS I/O subsystem, explains how to write a driver as a native
library, and provides a simple example in the form of a pipe driver.

GETTING STARTED
Before we begin, you need the TINI SDK version 1.02e or higher. Versions prior to 1.02e did not
publicly expose the com.dalsemi.comm.NativeComm class that is necessary for driver communication.

This document assumes some familiarity with the TINI Native Interface (TNI) as well as familiarity with
8051 assembly, the a390 assembler, and the macro preprocessor2.

DRIVER BASICS
A driver in TINIOS is made up of two parts: a set of standard functions to link with TINIOS (the driver
interface) and an interrupt or polled routine (the driver) to communicate with the device. Once the
interface is registered with TINIOS, it can be accessed using the com.dalsemi.comm.NativeComm class.

Accessing a Driver in Java
A device driver is loaded in as a native library. Once loaded, the following
com.dalsemi.comm.NativeComm methods can be used.

• public static int open(int port, int stream);
Opens a connection to the driver. port represents the driver’s port number, which is chosen by the
driver when it registers itself. stream can be set to NativeComm.STREAM_STDIN or
NativeComm.STREAM_STDOUT (they cannot be logically OR-ed together), depending on if the
handle represents an input or output stream. An integer handle is returned, which represents the
stream in all other calls. The handle is actually a one-byte unique- identifier value from the I/O
subsystem, but promoted to an integer for Java.

• public static int close(int handle);

Closes the stream associated with handle. Returns a 1 for success, or a 0 for failure.

1 Information available at http://www.ibutton.c om/TINI.
2 The TINI SDK, including all tools, are available at ftp://ftp.dalsemi.com/pub/tini.

Application Note 706
Writing a Device Driver for TINIOS

www.maxim-ic.com

http://www.ibutton.com/TINI
ftp://ftp.dalsemi.com/pub/tini

AN706

 2 of 33

• public static int read(int handle, byte [] arr, int timeout, boolean suspend);
• public static int read(int handle, byte [] arr, int length, int offset, int

timeout, boolean suspend);
Reads from the opened stream. handle must represent a stream opened for reading. arr is the
byte array buffer for the input. length is the size of the input buffer. offset represents the
first element of arr to be used for the read. timeout is the time in milliseconds allowed for the
read to complete before it returns. suspend should be set to true to ignore the timeout and
suspend until the read completes, or false to use the timeout. Function returns the number of bytes
read.

• public static void write(int handle, byte [] arr);

• public static void write(int handle, byte [] arr, int offset, int length);
Writes to an opened output stream. handle must represent a stream opened for writing. arr is
the output array. offset is the first element of arr to be written. length is the number of
bytes to write.

• public static int ioctl(int handle, byte [] arr, int offset, int length, int

timeout);
Sends an ioctl call to the driver. handle is any valid stream handle. arr is an array of
parameters. length is the number of parameters. All other arguments should be ignored.

• public static int available(int handle);
Returns the number of bytes available without blocking. handle represents an input stream.

DRIVER PHILOSOPHY
Figure 1 shows the design of a TINIOS device driver.

Figure 1. I/O DRIVER PHILOSOPHY

The driver can store incoming data in some sort of buffer in the event a read cannot be handled
immediately. A write is directly fed from the driver interface to the driver.

The driver interface consists of implementations of open, close, read, write, available, and ioctl functions.
These can be grouped together by what portion of the I/O subsystem invokes them, as shown by Figure 2.

AN706

 3 of 33

Figure 2. TINIOS I/O DESIGN

NativeComm
The com.dalsemi.comm.NativeComm class binds the Java Virtual Machine and the I/O subsystem.
It contains static Java methods for calling the driver interface functions. While the read and write
driver calls are queued by the I/O subsystem, the open, close, available, and ioctl are invoked
directly from the NativeComm methods. Program execution continues uninterrupted after these functions
complete.

§ open: Called when the user tries to open a device for input or output. Driver and device

initialization should be performed in this function. Returns a success/error value.
§ close: Called when the user closes a device. Driver and device shutdown procedures should be

performed in this function. Returns a success/error value.
§ available: Called to check the amount of available data that can be read from the driver.

Returns an integer count.
§ ioctl: Called for functionality not directly supported by the driver interface. Returns a

success/error value.

AN706

 4 of 33

I/O Queue
The I/O subsystem handles writes differently than the above methods.

1) The I/O subsystem receives the write call, checks if the handle is open for writing, and queues it
if the device is busy.

2) The driver write function is passed a buffer and a byte count to write. The driver write is a
catalyst—it does not perform the write operation, but instead prepares the driver for writing and
returns.

3) The I/O subsystem puts the executing Java thread to sleep.
4) The driver performs the hardware write. When it is finished, it calls the IO_WriteFree

function to inform the I/O Subsystem it has completed.
5) The Java thread is awoken, and execution resumes.

It is important to note that the driver write does not write to the hardware, but only prepares the write
for asynchronous execution by the driver. The safest approach is to have a poll routine check for the
completion of the write, calling IO_WriteFree when it detects completion. If IO_WriteFree is
called from the write function, it attempts to wake the Java Thread before it is put to sleep, and the
thread suspends indefinitely. Also, TINI does not have any way of protecting operating system state
from being modified inside of an interrupt service routine. Therefore, IO_WriteFree should not be
called from an ISR.

IO_POLL
The I/O subsystem must check on registered drivers continuously. To perform these checks, the
IO_POLL function is called by the scheduler every 4ms 3. IO_POLL manages the status of pending reads
and writes. It is possible to register your own callback functions to be called on every IO_POLL. These
do not necessarily need to be I/O related and can therefore serve any purpose.

The read driver interface function is called by IO_POLL as well. A driver read behaves very
differently than a driver write.

1) The read is queued by the I/O subsystem.
2) The Java thread is put to sleep.
3) IO_POLL calls the driver read function. The driver read uses an intermediate buffer of its own

to return up to 250 bytes back to the I/O subsystem. The driver read copies the amount it has
available into the buffer and exits.

4) Step 3 repeats until the amount requested is read in, or a timeout occurs in IO_POLL (if a timeout
is enabled).

5) The Java thread is awoken by the I/O subsystem upon completion of the read or a timeout.

Note the differences between write and read. While a driver write is called once to initiate a write to a
device, a driver read is called repeatedly by the I/O subsystem to poll the data. Also, while a write
operation requires an IO_WriteFree for termination, a read operation is terminated automatically by
the I/O subsystem on completion.

3 More or less 4ms. TINIOS is not real-time.

AN706

 5 of 33

IMPLEMENTATION DETAILS

Driver Portion
If the device uses an interrupt, use System_Install_Interrupt to install your interrupt service routine,
or System_Register_External_Interrupt to chain to the external interrupt line. If the device requires
a poll-based routine, use System_RegisterPoll to have your routine called every 4ms by IO_POLL.

Device writes should be handled within the driver, calling IO_WriteFree on completion. It is important
to note that IO_WriteFree cannot be called by the driver write interface function or by any interrupt
service routine.

Driver Interface Registration
To add a driver to the TINIOS, you need to register your driver with the I/O subsystem using the function
System_Register_Driver. A driver number between IOSYS_USER_DRIVER and
IOSYS_MAX_DRIVER must be assigned to the driver4. This number is used when opening and closing
the port.

It is recommended that you perform this step in the initialization function of your native library. The
driver will not be available until this step is complete.

Open
The driver open function is called when a thread attempts to open a driver. One of the microcontroller
registers (R2_B0) is set to the handle assigned to the port. Any state and device initialization should be
performed here.

Clear the accumulator to denote success, or an exception number (defined in apiequ.inc) to throw an
exception. All other registers must be restored to their prior state before returning.

Close
The driver close function is called when a thread closes the driver. Resident state cleanup and device
shutdown should be handled here.

Clear the accumulator to denote success, or an exception number (defined in apiequ.inc) to throw an
exception. All other registers are restored to their prior state before returning.

Read
Once a device read is initiated, the driver read function is called repeatedly. It is not passed any
arguments, and it returns a pointer to a structure, described by Figure 3.

Figure 3. READ FUNCTION RETURN VALUE

4 TINIOS supports 16 I/O drivers. Drivers 0 to 7 are allocated to the system, and 8 to 15 are allocated to the user.

AN706

 6 of 33

The first byte is the size of the buffer being returned, with a maximum or 250 bytes. The next three bytes
are reserved, and should be set to 0. The remaining bytes are the data from the resident portion’s read
buffer. Do not create a new buffer on every read call! Instead, create a buffer in the open function and
free it in close. If speed is not an issue, you can use ephemeral state blocks (with
NatLib_GetEphemeralStateBlock and NatLib_RemoveEphemeralStateBlock) to hold your state
information. Otherwise, use indirects (acquired from System_AcquireIndirectSemaphore) to store the
pointer to your state.

Clear the accumulator to denote success, or an exception number (defined in apiequ.inc) to throw an
exception. All registers except the first data pointer must be restored before returning.

Write
The driver write is passed the application id, the thread id, the data length, and a pointer to the data to be
written. All of this information must be passed to the resident portion and the write must be initiated.

Clear the accumulator to denote success, or an exception number (defined in apiequ.inc) to throw an
exception. All other registers must be restored on completion.

Available
Available is called to query the amount of data that can be read from the driver without blocking. The
value can be returned in R3:R2:R1:R0 of register bank 1. Clear the accumulator to denote success, or an
exception number (defined in apiequ.inc) to throw an exception. All other registers are restored to
their prior state before returning.

ioctl
The ioctl (input output control) function is used to make device specific calls. The first data pointer point
to an argument array, whose length is stored in R5:R4.

Clear the accumulator to denote success, or an exception number (defined in apiequ.inc) to throw an
exception. A return value can be put in R3:R2:R1:R0 of register bank 1. All other registers must be
restored on completion.

Process Destruction
A driver can register a process destroy callback, using System_RegisterProcessDestroyFunction, to
perform any closing and shutdown operation when a process exits. The process destroy callback is passed
the identifier of the dying process in R0. Clear the accumulator to denote success, or an exception number
to throw an exception. All other registers must be restored on completion.

Example: System Pipe
Provided in the appendices is a sample driver that implements a very simple pipe driver. The pipe driver
allows for output from one process or thread to be read from another process or thread. It uses an
Ephemeral State Block (ESB) to hold the circular buffer and the read function return buffer. One byte is
used for the size count, and another is used for the offset of the first byte into the queue. Using a 256-byte
buffer makes handling the rollover simple, as it occurs automatically when the appropriate registers
overflow.

On startup, the native library initialization routine uses the process id from System_GetCurrentProcessId
(which is assigned a value of 0 to 7) to set a bit in the reference counter value of the ESB. It then registers

AN706

 7 of 33

a process destroy callback, which clears the bits of the reference counter. When the counter is 0, the
driver performs cleanup operations and unregisters itself. This allows communication across process
boundaries.

Memory past the circular buffer is used for the read return value. There is no need to worry about
serializability of the return buffer, because only one driver read can be called at a time. The read
function insures it copies less than 250 bytes before performing the copy.

The write function installs a poll routine in IO_POLL to write the data into the buffer as space becomes
available. The poll routine performs the copy, storing intermediate state near the end of the ESB. The poll
routine removes itself when the write completes.

Classes in the com.dalsemi.pipeio package implement a java.io.InputStream and
java.io.OuputStream on top of the driver. This allows for java programs to access the driver as if it was
another standard Java input or output stream.

CONCLUSION
While most embedded tasks can be handled by the TINI JVM, there are instances that require more
greater and tighter constraints. These can be handled by adding native drivers to TINIOS. A native driver
consists of a polled or interrupt handler, and a set of interface functions. They can be loaded inside of a
native library, and TINI provides a standard interface to communicate with them. The main advantage of
using a native driver is that most of the operating system tasks, like queuing multiple writes or blocking a
process on a read, are offloaded onto TINIOS. This frees the developer to focus on device communication
and not operating system semantics.

TINI is a registered trademark of Dallas Semiconductor.

AN706

 8 of 33

Appendix A: driver.a51

$include(ds80c390.inc)
$include(apiequ.inc)
$include(tini.inc)
$include(tinimacro.inc)
$include(driver.inc)

;
; This driver implements a 255 byte circular buffer for
; communication across threads or processes. It user
; an ephemeral state block to hold the circular buffer
; and the return value for the read. (The structure
; is described in driver.inc).
;

;**
;*
;* Function Name: Init_Pipe
;*
;* Description: Native Library initialization routie.
;*
;* Input(s): None.
;*
;* Outputs(s): a - 0 on success, non-zero for init exception.
;*
;* Notes: I am creating my state info in this function.
;*
;*
;**

Init_Pipe:
 ;
 ; This function performs two operations. The first is
 ; to register the driver with the I/O subsystem. The second
 ; is to create state info for the pipe (the circular buffer,
 ; the read return value buffer, and the write state
 ; buffer).
 ;

Init_GetEphemeralStateBlock:
 ;
 ; Now create the state info. First, check if the
 ; Ephemeral State Block (ESB) exists.
 ;
 mov dptr, #QueueID ; see if we have an ESB installed
 lcall NatLib_GetEphemeralStateBlock

 ;
 ; Cache pointer away if it gets destroyed
 ;
 mov R5,dpl
 mov R6,dph
 mov R7,dpx

 jnz Init_MallocEphemeral ;

AN706

 9 of 33

 ;
 ; an ESB exists - some process
 ; has already called load since
 ; boot time
 ;
Init_StoreRetrieveEphemeral:
 ljmp Init_IncrementReferenceCount

 ;
 ; No ESB exists! Dios Mio! Time to
 ; init all the data!
 ;

Init_MallocEphemeral:
 ;
 ; Install the process destroy function
 ;
 mov dptr, #Pipe_ProcessExit
 lcall System_RegisterProcessDestroyFunction

 mov R2, #LOW(PIPE_END) ; Allocate 1024 bytes
 mov R3, #HIGH(PIPE_END) ;
 lcall mm_Malloc ;
 jnz Init_Done ;

 ;
 ; The memory is cleared by mm_malloc, so there isn't
 ; any more initialization to do
 ;
 mov dpl1, dpl ; copy address to
 mov dph1, dph ; second dptr
 mov dpx1, dpx ; handle is already in R3:R2

 ;
 ; Cache pointer away if it gets destroyed
 ;
 mov R5,dpl
 mov R6,dph
 mov R7,dpx

 mov dptr, #QueueID ; first dptr is our identifier
 lcall NatLib_InstallEphemeralStateBlock

 mov dpl,R5
 mov dph,R6
 mov dpx,R7

 ;
 ; We need to now assign our driver a
 ; driver number and store it away
 ;
 mov a,#LOW(PIPE_DRVNUM)
 mov b,#HIGH(PIPE_DRVNUM)
 lcall add_dptr1_16
 lcall System_IO_NextAvailableDriverNum
 PUTX
 mov dpl,R5
 mov dph,R6
 mov dpx,R7

 ;

AN706

 10 of 33

 ; Register the driver with the I/O subsystem.
 ; acc holds the driver num
 ;
 lcall Pipe_Init
 push acc
 lcall System_Register_Driver
 ;
 ; Disable non blocking write I/O
 ;
 pop acc
 mov b,#01
 lcall System_IO_EnableNonBlockingWrites

 mov dpl,R5
 mov dph,R6
 mov dpx,R7

Init_IncrementReferenceCount:
 ;
 ; mm_malloc should initialize the memory to zero.
 ; but we need to increment the reference count
 ;
 mov a,#LOW(PIPE_REFCOUNT)
 mov b,#HIGH(PIPE_REFCOUNT)
 lcall add_dptr1_16
 ;
 ; Set the bit denoting the process id
 ;
 lcall System_GetCurrentProcessId
 lcall Pipe_Power
 mov b,a
 GETX
 orl a,b
 PUTX

Init_Done:
 clr a
 ret

;**
;*
;* Function Name: Pipe_Read
;*
;* Description: Function to copy data from the circular buffer
;* back to the I/O subsystem.
;*
;* Input(s): None
;
;* Outputs(s): dptr - pointer to input buffer
;*
;* Notes: First 4 bytes of read buffer are:
;* length, 0, 0, 0
;*
;**

 ;
 ; The function copies data out of the circular buffer
 ; and into the read return buffer. I/O allows a maximum
 ; return value of 250 bytes per read, so that is our upper

AN706

 11 of 33

 ; bound
 ;

Pipe_Read:

 ;
 ; First, save *everything* away.
 ;
 PUSH_DPTR2
 PUSH_BANK_0
 PUSH_BANK_1
 PUSH b
 PUSH acc
 PUSH DPS

 ;
 ; Get the state block
 ;
 PIPE_GET_BUFFER
 ;
 ; Save the pointer away
 ;
 mov R0_B1,dpl
 mov R1_B1,dph
 mov R2_B1,dpx
 PUSH_DPTR1

 ;
 ; Move to the read buffer
 ;
 mov a,#LOW(PIPE_R_LEN)
 mov b,#HIGH(PIPE_R_LEN)
 lcall add_dptr1_16
 ;
 ; Store the read buffer away in DPL1:DPH1:DPX1
 ;
 mov R3_B1,dpl
 mov R4_B1,dph
 mov R5_B1,dpx

 mov dpl1,dpl
 mov dph1,dph
 mov dpx1,dpx
 POP_DPTR1
 ;
 ; Now DPL:DPH:DPX is pointing to the pipe buffer
 ; and DPL1:DPH1:DPX1 is pointing to the read buffer.
 ; Get the state vars from the pipe
 ;

 mov dps,#0 ; Use DPL:DPH:DPX
 inc dptr ; Move to the size byte
 GETX
 mov R0,a ; Get the start offset
 inc dptr
 GETX
 mov R1,a
 inc dptr

 ;
 ; R7 is R0 with the high bit cleared. It will

AN706

 12 of 33

 ; serve as our loop counter and as our number
 ; of bytes to read
 ;
 mov R7,R0_B0
 clr c
 mov a,R0
 cjne a,#250,$+3
 jc pipe_read_init_ret_buf
 mov R7,#250

pipe_read_init_ret_buf:
 ;
 ; We're going to need this buffer later
 ;
 PUSH_DPTR1

 ;
 ; Ok, now the size and offset are in R0:R1.
 ; and DPL:DPH:DPX are pointing to the first byte
 ; of the pipe. Lets initialize the return buffer,
 ; shall we?
 ;
 ; Start by switching to DPL1:DPH1:DPX1
 ;
 inc dps
 ;
 ; Write the length of the return size
 ;
 mov a,R7
 PUTX
 inc dptr
 ;
 ; Fill in the rest of the header
 ;
 clr a
 PUTX
 inc dptr
 PUTX
 inc dptr
 PUTX
 inc dptr

 ;
 ; We're going to copy what we can from the pipe
 ; into the read buffer.
 ;

 POP_DPTR1

 ;
 ; Looks like we're committed. Lets start reading
 ;
 mov dps,#1

pipe_read_test_zero:
 ;
 ; Test if we are sending zero bytes
 ;
 mov a,R7
 jnz pipe_read_loop

AN706

 13 of 33

 ljmp pipe_read_exit

pipe_read_loop:
 ;
 ; Use DPL:DPH:DPX
 ;
 inc dps
 ;
 ; Use movc for the copy
 ;
 ; Yes, I *know* how very illegal this should be
 ; as it is only possible when code space = data space,
 ; but I saw Don "The Godfather" Loomis ("Let me write you
 ; a firmware you can't refuse") do it in his code, so
 ; I claim I can to.
 ;
 mov a,R1
 movc a,@a+dptr

 ;
 ; Write acc into the read buffer
 ;
 inc dps
 PUTX
 inc dptr

 ;
 ; increment the buffer offset, decrement
 ; the size count, and loop
 ;
 inc R1
 dec R0
 djnz R7,pipe_read_loop

pipe_read_exit:
 ;
 ; Get the read buffer
 ;
 mov dpl, R0_B1
 mov dph, R1_B1
 mov dpx, R2_B1

 ;
 ; Update 'start' and 'offset'
 mov dps,#0
 inc dptr
 mov a,R0
 PUTX
 inc dptr
 mov a,R1
 PUTX

 mov dpl, R3_B1
 mov dph, R4_B1
 mov dpx, R5_B1

AN706

 14 of 33

 ;
 ; Exit without incident
 ;

 POP DPS
 POP acc
 POP b
 POP_BANK_1
 POP_BANK_0
 POP_DPTR2

 clr a
 ret

;**
;*
;* Function Name: Pipe_Write
;*
;* Description:
;*
;* Input(s): dptr -> pointer to data to send
;* R2 -> App Id
;* R7 -> Thread Id
;* R5:R4 -> length of data to send.
;*
;* Outputs(s): a - 0 on success, exception number on failure
;*
;*
;**

 ;
 ; This function "initiates" the write operation.
 ; It moves the state it has been passed into the ESB,
 ; and then installs a poll routine to perfom the copy
 ; operation. The function then exits.
 ;

Pipe_Write:
 ;
 ; Get the state block, but make sure not
 ; to disrupt any of the registers we've
 ; been passed!
 ;
 PUSH acc
 PUSH b
 PUSH dps
 PUSH_BANK_0
 PUSH_DPTR1

 push r4_b0
 push r5_b0
 push r2_b0
 push r7_b0
 PIPE_GET_BUFFER

 pop R7_b0
 pop R2_B0
 pop R5_B0
 pop R4_B0

AN706

 15 of 33

 mov dps,#0

 ;
 ; Write all of our state while making sure
 ; the scheduler doesn't run (preventing
 ; our poll from writing in the middle of
 ; our write).
 ;

 TINIOS_ENTER_CRITICAL_SECTION

 ;
 ; Inform our poll routine that a write is occurring
 ;
 GETX
 setb PIPE_WRITE_BIT
 PUTX

 ;
 ; Fill in the state vars
 ;
 mov a, #LOW(PIPE_W_STATE)
 mov b, #HIGH(PIPE_W_STATE)
 lcall add_dptr1_16

 mov a,R4
 PUTX
 inc dptr
 mov a,R5
 PUTX
 inc dptr
 mov a,R7
 PUTX
 inc dptr
 mov a,R2
 PUTX

 POP_DPTR2

 inc dptr
 mov a,dpl1
 PUTX
 inc dptr
 mov a,dph1
 PUTX
 inc dptr
 mov a,dpx1
 PUTX
 clr a

 mov dptr,#Pipe_Poll
 lcall System_RegisterPoll

 TINIOS_EXIT_CRITICAL_SECTION

 POP_BANK_0
 pop dps

AN706

 16 of 33

 pop b
 pop acc
 ret

;**
;*
;* Function Name: Pipe_Poll
;*
;* Description: Poll routine installed to copy from the write
;* buffer into the circular buffer.
;*
;* Input(s): None
;*
;* Outputs(s): a - 0 on success, exception number on failure
;*
;*
;**

 ;
 ; This function performs the write operation. If there is not
 ; enough space in the circular buffer for the data, it will
 ; copy data into the space available, and then return. This
 ; will repeat until all the data has been written, where
 ; the poll routine calls IO_WriteFree and removes itself
 ; from IO_POLL
 ;

Pipe_Poll:
 PUSH_DPTR1
 PUSH_DPTR2
 PUSH_BANK_0
 PUSH_BANK_1
 PUSH b
 PUSH acc
 PUSH DPS

 ; Register Usage
 ; ----------------
 ; R0_B0 - Buffer size
 ; R1_B0 - Offset into Queue
 ; R2_B0 - Handle for the io subsystem
 ; R3_B0 - Count register for loop
 ; R4:R5 - Size for write (Bank 0)
 ; R7_B0 - Thread ID of write
 ; R0:R1:R2 (Bank 1) - Pointer to circular buffer offset
 ; R3:R4:R5 (Bank 1) - Pipe Data Structure

 ;
 ; If the write bit is not set, then
 ; exit out
 ;
 mov dps,#0

 PIPE_GET_BUFFER
 GETX
 jb PIPE_WRITE_BIT, pipe_poll_init
 clr a
 ljmp pipe_poll_exit

pipe_poll_init:

AN706

 17 of 33

 ;
 ; Cache the pointer to the state block
 ;
 mov R3_B1,dpl
 mov R4_B1,dph
 mov R5_B1,dpx

 mov a,#LOW(PIPE_W_STATE)
 mov b,#HIGH(PIPE_W_STATE)
 lcall add_dptr1_16
 GETX
 mov R4,a
 inc dptr
 GETX
 mov R5,a
 inc dptr
 GETX
 mov R7,a
 inc dptr
 GETX
 mov R2,a
 inc dptr
 GETX
 push acc
 inc dptr
 GETX
 push acc
 inc dptr
 GETX
 mov dpx,a
 pop dph
 pop dpl

 ;
 ; Hold onto the write buffer
 ;
 mov dpl1,dpl
 mov dph1,dph
 mov dpx1,dpx

 ;
 ; Cache the pointer to the state block
 ;
 mov dpl,R3_B1
 mov dph,R4_B1
 mov dpx,R5_B1

 ;
 ; Get the size and the offset
 ;
 inc dptr
 GETX
 mov R0,a
 inc dptr
 GETX
 mov R1,a
 inc dptr
 ;
 ; Cache the pointer to the buffer

AN706

 18 of 33

 ;
 mov R0_B1,dpl
 mov R1_B1,dph
 mov R2_B1,dpx
 ;
 ; Calculate the available size for the circular
 ; buffer (255-size = compliment of R0) and stash
 ; in R3
 ;
 mov a,R0
 cpl a
 mov R3,a

 ;
 ; Figure out how many bytes will
 ; be copied in. My logic is:
 ; 1) If R5 is set, then size > 255. Copy in
 ; what size is available
 ; 2) If R5 is zero and R4 > available size,
 ; then copy in available size bytes
 ; 3) Otherwise, copy in R4 number of bytes
 ;
pipe_poll_calc_available:
 mov a,R5
 jnz pipe_poll_use_available

 clr c
 mov a,R3
 cjne a,R4_B0,$+3
 jc pipe_poll_use_available

 mov R3,R4_B0

pipe_poll_use_available:
 ;
 ; Check if R3 is zero, and abort if it is
 ;
 mov a,R3
 jnz pipe_poll_not_zero
 sjmp pipe_poll_notdone

pipe_poll_not_zero:

 ;
 ; Since we aren't going to overwrite the start
 ; variable, lets use it as our offset var into
 ; the circular buffer. Add the size to the offset
 ; to calculate start position
 ;
 mov a,R0
 add a,R1
 mov R1,a

 ;
 ; Subtract the size off R4:R5
 ;
 clr c
 mov a,R4

AN706

 19 of 33

 subb a,R3
 mov R4,a
 mov a,R5
 subb a,#0
 mov R5,a

pipe_poll_loop:
 ;
 ; Yes, I *know* this is a slow approach, but
 ; it means I don't need to do any modulo work.
 ; Get a byte from the write buffer
 ;
 inc dps
 GETX
 mov b,a
 inc dptr

 ;
 ; Return to the circular buffer
 ;
 inc dps

 ;
 ; Reset it, and go in offset ammount, and write
 ; the byte
 ;
 mov dpl,R0_B1
 mov dph,R1_B1
 mov dpx,R2_B1
 mov a,R1
 lcall add_dptr1
 mov a,b
 PUTX

 ;
 ; Increment counters and loop
 ;
 inc R1
 inc R0
 djnz R3,pipe_poll_loop

 ;
 ; If there are not any other
 ; bytes to write then clear the write
 ;
 mov a,R4
 orl a,R5
 jnz pipe_poll_notdone

 mov dpl,R3_B1
 mov dph,R4_B1
 mov dpx,R5_B1
 GETX
 clr PIPE_WRITE_BIT
 PUTX

 lcall System_IO_WriteFree

AN706

 20 of 33

 mov dptr,#Pipe_Poll
 lcall System_RemovePoll

pipe_poll_notdone:
 ;
 ; Write the current state of the queue
 ; back into the state block
 ;

 mov dpl,R3_B1
 mov dph,R4_B1
 mov dpx,R5_B1
 inc dptr
 mov a,R0
 PUTX

 mov a,#LOW(PIPE_W_STATE-PIPE_SIZE)
 mov b,#HIGH(PIPE_W_STATE-PIPE_SIZE)
 lcall add_dptr1_16

 mov a,R4
 PUTX
 inc dptr
 mov a,R5
 PUTX
 inc dptr
 mov a,R7
 PUTX
 inc dptr
 mov a,R2
 PUTX
 inc dptr
 mov a,dpl1
 PUTX
 inc dptr
 mov a,dph1
 PUTX
 inc dptr
 mov a,dpx1
 PUTX

 clr a

pipe_poll_exit:

 POP DPS
 POP acc
 POP b
 POP_BANK_1
 POP_BANK_0
 POP_DPTR2
 POP_DPTR1

 clr a
 ret

;**
;*

AN706

 21 of 33

;* Function Name: Pipe_Open
;*
;* Description: Function to initialize the driver
;*
;* Input(s): a -> Port Number
;* R2 -> Driver Handle
;*
;* Outputs(s): a - 0 if success, exception number otherwise
;*
;* Notes: I am using the Native Library init routine to
;* create the state block, so we will just initialize
;* it in this function.
;*
;**

Pipe_Open:
 ;
 ; Initialize the pipe data structure
 ;
 PIPE_GET_BUFFER
 clr a
 PUTX
 inc dptr
 PUTX
 inc dptr
 PUTX

 ;
 ; Clear out anything that remains in the pipe read buffer
 ;
 mov a,#LOW(PIPE_R_LEN-PIPE_START)
 mov b,#HIGH(PIPE_R_LEN-PIPE_START)
 lcall add_dptr1_16
 clr a
 PUTX
 inc dptr
 PUTX
 inc dptr
 PUTX
 inc dptr
 PUTX
 inc dptr

 ;
 ; Increment the reference count
 ;

 clr a
 ret

;**
;*
;* Function Name: Pipe_Close
;*
;* Description: Function to shutdown the driver
;*
;* Input(s): a -> Port Number
;*
;* Outputs(s): a - 0 if success, exception number otherwise
;*
;* Notes: Simply making sure the Poll routine has been removed

AN706

 22 of 33

;* before exiting.
;*
;*
;**

Pipe_Close:
 ;
 ; First, remove the poll routine if it is resident
 ;
 mov dptr,#Pipe_Poll
 lcall System_RemovePoll

 clr a
 ret

;**
;*
;* Function Name: Pipe_Ioctl
;*
;* Description: Use to make driver-specific calls
;*
;* Input(s): dptr -> pointer to argument array
;* R2 -> Driver Handle
;* R5:R4 -> length of data to send.
;*
;* Outputs(s): a - 0 if success, exception number otherwise
;*
;* Notes:
;*
;**

Pipe_IOCTL:
 clr a
 ret

;**
;*
;* Function Name: Pipe_Available
;*
;* Description: Use to make driver-specific calls
;*
;* Input(s): R2 -> Driver Handle
;*
;* Outputs(s): a - 0 if success, exception number otherwise
;* R0:R1:R2:R2 - Size of available pipe data.
;*
;* Notes:
;*
;**

 ;
 ; Pulls the size out of the ESB and returns it
 ;

Pipe_Available:
 PUSH_DPTR1

AN706

 23 of 33

 PUSH_BANK_0
 PUSH acc
 PUSH b

 PIPE_GET_BUFFER

 TINIOS_ENTER_CRITICAL_SECTION
 inc dptr
 GETX
 TINIOS_EXIT_CRITICAL_SECTION

 mov R0_B1,a
 clr a
 mov R1_B1,a
 mov R2_B1,a
 mov R3_B1,a

 POP b
 POP acc
 POP_BANK_0
 POP_DPTR1
 ret

;**
;*
;* Function Name: Pipe_Init
;*
;* Description: Prepares the driver for registration
;*
;* Input(s): None
;*
;* Outputs(s): All registration registers are set.
;*
;*
;**

Pipe_Init:
 mov dptr,#Pipe_Read
 mov R0_B0,dpl
 mov R1_B0,dph
 mov R0_B1,dpx

 mov dptr,#Pipe_Write
 mov R2_B0,dpl
 mov R3_B0,dph
 mov R2_B1,dpx

 mov dptr,#Pipe_Open
 mov R4_B0,dpl
 mov R5_B0,dph
 mov R4_B1,dpx

 mov dptr,#Pipe_Close
 mov R6_B0,dpl
 mov R7_B0,dph
 mov R6_B1,dpx

 mov dptr,#Pipe_IOCtl

AN706

 24 of 33

 mov R0_B2,dpl
 mov R1_B2,dph
 mov R0_B3,dpx

 mov dptr,#Pipe_Available
 mov R2_B2,dpl
 mov R3_B2,dph
 mov R2_B3,dpx
 ret

;**
;*
;* Function Name: Pipe_Power
;*
;* Description: Helper method - performs a 2^a operation
;*
;* Input(s): acc - value
;*
;* Outputs(s): acc - Two to the power of parameter (8 bits only)
;*
;*
;**

Pipe_Power:
 push b
 mov b,a
 mov a,#1
 jz pipe_power_exit
pipe_power_loop:
 rl a
 djnz b,pipe_power_loop

pipe_power_exit:
 pop b
 ret

;**
;*
;* Function Name: Pipe_ProcessExit
;*
;* Description: Called on process destruction. Cleans up
;* things left behind.
;*
;* Input(s): acc - Process ID
;*
;* Outputs(s): none
;*
;* Note(s): PID is passed in R0
;*
;**

Pipe_ProcessExit:
 PUSH_DPTR1
 PUSH_BANK_0
 push b
 push R0_B1
 push R1_B1
 push R2_B1

 PIPE_GET_BUFFER

AN706

 25 of 33

 jz pipe_processexit_start
 ljmp pipe_processexit_exit

pipe_processexit_start:
 ;
 ; Hold onto the pointer
 ;
 mov R0_B1,dpl
 mov R1_B1,dph
 mov R2_B1,dpx
 ;
 ; Hold onto the handle
 ;
 mov R6,R2_B0
 mov R7,R3_B0
 ;
 ; Hold the PID
 ;
 ;
 ; We need to clear the process bit
 ;
 mov a,#LOW(PIPE_REFCOUNT)
 mov b,#HIGH(PIPE_REFCOUNT)
 lcall add_dptr1_16
 ;
 ; Set the bit denoting the process id
 ;
 mov a,R0
 lcall Pipe_Power

 cpl a
 mov b,a
 GETX
 anl a,b
 PUTX

 ;
 ; If no one else is holding onto this driver,
 ; then perform the proper cleanup.
 ;
 jz pipe_processexit_cleanup
 sjmp pipe_processexit_exit

pipe_processexit_cleanup:
 ;
 ; Since we're still in the neighborhood,
 ; lets get the driver num and store it away
 ;
 inc dptr
 GETX
 ;
 ; First, remove the driver from the driver table
 ;
 lcall System_Unregister_Driver

 ;
 ; Next, remove the poll routine if it is resident
 ;
 mov dptr,#Pipe_Poll

AN706

 26 of 33

 lcall System_RemovePoll

 ;
 ; Remove ourselves from the process destroy
 ; callback
 ;
 mov dptr, #Pipe_ProcessExit
 lcall System_UnregisterProcessDestroyFunction

 ;
 ; Finally, lets clear the ESB
 ;
 mov dptr,#QueueID
 lcall NatLib_RemoveEphemeralStateBlock

 mov R2,R6_B0
 mov R3,R7_B0
 lcall MM_Free
pipe_processexit_exit:
 pop R2_B1
 pop R1_B1
 pop R0_B1
 pop b
 POP_BANK_0
 POP_DPTR1
 clr a
 ret

;
; TINIConvertor in version 1.02 requires a native method
;
Native_GetPipeDriver:
 PIPE_GET_BUFFER
 mov a,#LOW(PIPE_DRVNUM)
 mov b,#HIGH(PIPE_DRVNUM)
 lcall add_dptr1_16
 GETX
 mov R0,a
 clr a
 mov R1,a
 mov R2,a
 mov R3,a
 ret

QueueID:
db "DSPIPEEX",0

Debug_Str:
db "Debug Point ",0

END

AN706

 27 of 33

Appendix B: driver.inc

$include(tinidriver.inc)

;
;
; Structure for my buffer
;
; struct PipeQueue
; {
; //
; // Circular buffer state vars
; //
; u1 flags
; u1 size
; u1 start
; u1 buffer[256]
; //
; // Read return value
; //
; u1 r_len
; u1 r_reserved[3]
; u1 r_buffer[256]
; //
; // Write State variables
; //
; u1 w_state[8]
; //
; // Keep track of how many times we have been opened
; //
; u1 reference_count
; //
; // The driver number we loaded into
; //
; u1 driver_num
; }

PIPE_FLAGS equ 0
PIPE_SIZE equ PIPE_FLAGS+1
PIPE_START equ PIPE_SIZE+1
PIPE_BUFFER equ PIPE_START+1
PIPE_R_LEN equ PIPE_BUFFER+256
PIPE_R_RESV equ PIPE_R_LEN+1
PIPE_R_BUFFER equ PIPE_R_LEN+3
PIPE_W_STATE equ PIPE_R_BUFFER+256
PIPE_REFCOUNT equ PIPE_W_STATE+8
PIPE_DRVNUM equ PIPE_REFCOUNT+1
PIPE_END equ PIPE_DRVNUM+1

;
; Used for denoting a write in progress
; in the flags byte
;
PIPE_WRITE_BIT equ acc.7

;
; Get the pipe buffer from TINIOS

AN706

 28 of 33

;
PIPE_GET_BUFFER MACRO
 mov dptr, #QueueID ; see if we have an ESB installed
 lcall NatLib_GetEphemeralStateBlock
ENDM

;
; Debug Macro
;
PIPE_DEBUG MACRO PARAM value
 PUSH_DPTR1
 push acc
 push dps
 mov dps,#0
 mov dptr,#Debug_Str
 lcall info_sendstring
 mov a,#value
 lcall info_sendtwohex
 lcall info_sendcrlf
 pop dps
 pop acc
 POP_DPTR1
ENDM

AN706

 29 of 33

Appendix C: PipeDriver.java

package com.dalsemi.pipeio;

import com.dalsemi.comm.*;

public class PipeDriver
{
 static int pipe_port;
 //
 // This method dynamically looks up the
 // next available driver from the system
 // and allocates it, or uses the current
 // driver number if the pipe is
 // already loaded.
 //
 static native int getPipeDriver();

 static
 {
 System.loadLibrary("driver.tlib");
 pipe_port = getPipeDriver();
 }
}

AN706

 30 of 33

Appendix D: PipeInputStream.java
package com.dalsemi.pipeio;

import com.dalsemi.comm.*;
import java.io.*;

public class PipeInputStream extends InputStream
{

 //
 // Handle to the pipe input stream
 //
 int pipe_handle;
 //
 // Input buffer for single byte reads
 //
 byte [] charArr;

 public PipeInputStream() throws Exception
 {
 //
 // Denote the pipe as invalid
 //
 pipe_handle = -1;
 charArr = new byte[1];
 try
 {
 //
 // On any exception, make the pipe invalid
 //
 pipe_handle = NativeComm.open(PipeDriver.pipe_port,
 NativeComm.STREAM_STDIN);
 }
 catch (Exception E)
 {
 pipe_handle = -1;
 throw E;
 }
 }

 public int read(byte arr[], int offset, int length) throws IOException
 {
 //
 // Perform a validity check
 //
 if (pipe_handle == -1)
 throw new IOException("pipe is not valid");
 //
 // Perform a length/offset check. This is *not* done
 // by I/O for you.
 //
 if ((offset >= 0) && ((offset+length) <= arr.length))
 {
 return NativeComm.read(
 pipe_handle,arr,offset,length,0,false);
 }
 else throw new ArrayIndexOutOfBoundsException(
 "offset = " + offset + "length = " + length);
 }

AN706

 31 of 33

 public int read() throws IOException
 {
 int len;
 //
 // Perform a validity check
 //
 if (pipe_handle == -1)
 throw new IOException("pipe is not valid");
 //
 // Read a single byte
 //
 len = NativeComm.read(pipe_handle,charArr,0,1,0,false);

 return ((len==1)?((int)charArr[0]&0xFF):-1);
 }

 public void close() throws IOException
 {
 if (pipe_handle != -1)
 NativeComm.close(pipe_handle);
 }
}

AN706

 32 of 33

Appendix E: PipeOutputStream.java
package com.dalsemi.pipeio;

import com.dalsemi.comm.*;
import java.io.*;

public class PipeOutputStream extends OutputStream
{
 //
 // Handle to the pipe input stream
 //
 int pipe_handle;
 //
 // Array for passing single byte values
 //
 byte [] charArr;

 public PipeOutputStream() throws Exception
 {
 //
 // Denote the pipe as invalid
 //
 pipe_handle = -1;
 charArr = new byte[1];
 try
 {
 //
 // On any exception, make the pipe invalid
 //
 pipe_handle = NativeComm.open(PipeDriver.pipe_port,
 NativeComm.STREAM_STDOUT);
 }
 catch (Exception E)
 {
 pipe_handle = -1;
 throw E;
 }
 }

 public void write(byte [] arr, int offset, int len) throws IOException
 {
 //
 // Perform a validity check
 //
 if (pipe_handle == -1)
 throw new IOException("pipe is not valid");
 //
 // Perform a length/offset check. This is *not* done
 // by I/O for you.
 //
 if ((offset >= 0) && ((offset+len) <= arr.length))
 {
 NativeComm.write(pipe_handle,arr,offset,len);
 }
 else
 throw new ArrayIndexOutOfBoundsException(
 "offset = " + offset + " len = " + len);
 }

 public void write(int x) throws IOException

AN706

 33 of 33

 {
 //
 // Perform a validity check
 //
 if (pipe_handle == -1)
 throw new IOException("pipe is not valid");

 charArr[0] = (byte)(x & 0xFF);

 NativeComm.write(pipe_handle,charArr,0,1);
 }

 public void close() throws IOException
 {
 if (pipe_handle != -1)
 NativeComm.close(pipe_handle);
 }

}

